Perron Frobenius Theorem is a well-known algebra result that finds applications in a large span of fields of Mathematics. One can mention Markov chains, population growth (with the Leslie matrix model) or the famous PageRank algorithm. In this post we prove the Perron-Frobenius Theorem for stochastic matrices.
Perron Frobenius Theorem
Let us consider some integer and
a stochastic matrix, meaning that for all
,
. In the following, we will denote
. We assume that
is irreducible which means that
Then the period of the point
defined by
does not depend on
meaning that there exists some
such that
. Then:
- The spectral radius of
is
. Moreover, the eigenvalues of
of modulus 1 are exactly the p p-th roots of unity and have algebraic multiplicity of 1.
- The spectrum of
is invariant by rotation of angle
.
- If
, it exists a permutation matrix
such that
are non-zero square matrices.
Proof.
Step 0 : Preliminaries
Let us recall that on a finite state space, an irreducible matrix has a unique invariant probability distribution
.
Claim 0.1:
Let us assume that for some it holds
. Since
is a probability measure on a finite space, there exists some
such that
. Using that
is invariant for
we get directly that
is also an invariant distribution of the matrix
for any
which means that
![Rendered by QuickLaTeX.com i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-695d9d59bd04859c6c99e7feb11daab6_l3.png)
![Rendered by QuickLaTeX.com \sum_k q_{k,i}^{(n)}=0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-b993c5c59a98665554bd477097732128_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}^{(n)} \pi_j=0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-8cd3bdc852553cc072b34075830e5efd_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}^{(n)}=0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-541ce5cc0d98fc303bc47f407c08163a_l3.png)
![Rendered by QuickLaTeX.com \pi_j>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-37724235c232d5004d4d691b368628fd_l3.png)
![Rendered by QuickLaTeX.com n \in \mathbb N](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-eba11e5f80a5687d224f087ba63739dc_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}^{(n)}=0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-541ce5cc0d98fc303bc47f407c08163a_l3.png)
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
Claim 0.2: Denoting ,
is an irreducible stochastic matrix
Claim 0.2 follows from a direct computation using the fact that is an irreducible stochastic matrix.
Step 1 : Eigenspace associated with the eigenvalue 1
Let us denote . It is a eigenvector of
related to the eigenvalue 1.
Claim 1.1: The spectral radius of is 1.
Let us denote an (complex) eigenvalue of
with the largest modulus and
an non-zero associated eigenvector. Let
. Since
, taking the module and using the triangle inequality gives
where the last inequality comes from the fact that is a stochastic matrix. By definition of
and since
, we have that
and the previous inequality leads to
. Since 1 is an eigenvalue of
, we deduce that the spectral radius of
is 1.
Claim 1.2: For two vectors , we write
to state that
for all
. Then, for any
such that
and
, it holds that
and there exists some
such that
.
Let us consider . Then for any
, we have
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
![Rendered by QuickLaTeX.com i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-695d9d59bd04859c6c99e7feb11daab6_l3.png)
![Rendered by QuickLaTeX.com X\geq0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-0a33f555a5cae277250940eb43122536_l3.png)
![Rendered by QuickLaTeX.com QX \geq X](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-8c32055e80cd237699fa131a6bb81a24_l3.png)
![Rendered by QuickLaTeX.com j\in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-4f9617d09086efe013a24eee68e0f983_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}^{(n)}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-48a4b9182eb3f64a679d175b54d94a2d_l3.png)
![Rendered by QuickLaTeX.com X_j=X_i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-1cba81222936cf48554045ef7f730fcf_l3.png)
![Rendered by QuickLaTeX.com n \in mathbb N](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-e28795ba8ec2342f37a715c9a9fb23d9_l3.png)
![Rendered by QuickLaTeX.com j \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-8cfc93137c248386bb49a1b7d9267fad_l3.png)
![Rendered by QuickLaTeX.com n \in \mathbb N](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-eba11e5f80a5687d224f087ba63739dc_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}^{(n)}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-48a4b9182eb3f64a679d175b54d94a2d_l3.png)
![Rendered by QuickLaTeX.com X=a \mathbf 1](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-48e4fc6f0a8ebe11ca7b1529e2b2b9b0_l3.png)
![Rendered by QuickLaTeX.com a=X_i>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-7e63125042c507c1316e9a3729acef3c_l3.png)
![Rendered by QuickLaTeX.com QX=X](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-1ec276ba750c68c23be309395cbc475b_l3.png)
Claim 1.3: If is a complex eigenvector realted to an eigenvalue
of modulus 1 of
, then
is an nonnegative eigenvector related to the eigenvalue 1. This implies that the eigenspace related to 1 is
.
For all ,
. Hence, taking the modulus in the previous inequality and using the triangle inequality leads to
i.e.
Using Claim 1.2, we deduce that
and that
, which concludes the proof.
Step 2 : Algebraic multiplicity of the eigenvalue 1
In the following, we will denote the caracteristic polynomial of the matrix
and
the conjugate of the comatrice of
. Claim 2.1 is a classical result of differential calculus.
Claim 2.1: .
Claim 2.2: Every column of belongs to
.
From Step 1, we know that has rank
. Hence
and we get that
![Rendered by QuickLaTeX.com P](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-650eb7688af6737ac325425b5c9a5982_l3.png)
![Rendered by QuickLaTeX.com I-Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-4e6ea2873dd2d9fc8a091bfaebb1a69f_l3.png)
![Rendered by QuickLaTeX.com Vect(\mathbf 1)](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-b72412ff4fbdc6b438dc1ecc4f9c9c94_l3.png)
![Rendered by QuickLaTeX.com P](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-650eb7688af6737ac325425b5c9a5982_l3.png)
![Rendered by QuickLaTeX.com Vect(\mathbf 1)](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-b72412ff4fbdc6b438dc1ecc4f9c9c94_l3.png)
Claim 2.3: Every line of is proportional to
.
From Step 0, we know that is an irreducible stochastic matrix and we deduce that this is also the case for
. Hence, remarking that Claim 2.2 holds for any irreducible stochastic matrix, we get that every column of
is proportional to
, meaning that for all
, there exists some
such that
for all
where we have denote
the cofactor application related to line
and column
. Hence, for all
![Rendered by QuickLaTeX.com i,j \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-89a6a9336c9949845484af26fdd006b1_l3.png)
![Rendered by QuickLaTeX.com c_{i,j}(I-Q) = \frac{a_j}{\pi_j}\pi_i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-0dc1692aa8e1240cf1c33d7de16b6532_l3.png)
![Rendered by QuickLaTeX.com P=Com(I-Q)^{\top} = \left( c_{j,i}\right)_{i,j \in [d]}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-f151aabc3dde44f724c1d9a1960b3fbc_l3.png)
![Rendered by QuickLaTeX.com \pi.](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-26622dd58bf71cd1b543c3d83233c561_l3.png)
Claim 2.4: All entries of are non-zero and share the same sign.
From Step 1, the rank of the matrix is 1 and thus the dimension of its nullspace is
. We deduce that there exists a submatrix from
with size
which is invertible. This implies that the matrix
has at least one non-zero coefficient and we note
its location. From Claim 2.2, we deduce that all the entries of the j-th column of
are non-zero (and have the same sign since they are equal). Then, using Claim 2.3 together with the fact that
from Step 0, we get the Claim 2.4.
Conclusion
From Claims 2.1 and 2.4, we have . This proves that
is a root with multiplicity
of the caracteristic polynomial of
.
Step 3 : The other eigenvalues of modulus 1
We consider an eigenvector (complex) related to an eigenvalue
with modulus 1 of
Using Claim 1.2, we can immediately that
is independent of
and thus we can consider without loss of generality that
.
Claim 3.1: If then
.
Since , taking the modulus and using the triangle inequality gives
. From Claim 1.2, we get that there exists some
such that
.
Claim 3.2: If then
.
Let us consider some . Taking the modulus in
leads to
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
![Rendered by QuickLaTeX.com (*)](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-aa7610b4d9875f34d4e5f928cd95fe5e_l3.png)
![Rendered by QuickLaTeX.com (z_k)_k](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-423c339cbdcf77e67eefc5c74402cebb_l3.png)
![Rendered by QuickLaTeX.com q_{i,k}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-924171cdeef53c911ff101424f0d3f2f_l3.png)
![Rendered by QuickLaTeX.com (z_k)_k](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-423c339cbdcf77e67eefc5c74402cebb_l3.png)
![Rendered by QuickLaTeX.com q{i,k}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-f37f0568abb90c380f06919660f311e0_l3.png)
![Rendered by QuickLaTeX.com \overline{z}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-460b49e3bdb30de07663eb1e07f44276_l3.png)
![Rendered by QuickLaTeX.com i,j \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-89a6a9336c9949845484af26fdd006b1_l3.png)
![Rendered by QuickLaTeX.com q_{i,j}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-d9a8aae17653d263dcf73d44bb0db896_l3.png)
![Rendered by QuickLaTeX.com z_j=\lambda z_i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-368a78056bb9085d3ece93c78d4bb2d3_l3.png)
Claim 3.3: is a p-th root of unity.
Let us consider such that
. For all
, since
, Claim 3.2 gives
and since
(see Claim 3.1), we have that
. Hence
is an integer and divides
. We deduce that
divides
meaning that there exists some
such that
. We have found that
is a p-th root of unity.
Conversely, let us consider a p-th root of unity. We define the vector
by
and
if
.
Claim 3.4: The vector is well-defined and is an eigenvector associated with the eigenvalue
.
We first show that
is well-defined. Let us consider some
. By irreducibility of the matrix
, there exists some
such that
. Then, for all
such that
, we have
![Rendered by QuickLaTeX.com p=p_i](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-72284389407a4b05acaf3cfbb0c9da4d_l3.png)
![Rendered by QuickLaTeX.com k+r](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-ffa44832788117bc6da6fdd2de67551c_l3.png)
![Rendered by QuickLaTeX.com \lambda](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2b5c45836864531b8e37025dabadd24a_l3.png)
![Rendered by QuickLaTeX.com k,l \in \mathbb N](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-c9ddd3b0f82b77cb365e5a33cd29e47a_l3.png)
![Rendered by QuickLaTeX.com q_{1,i}^{(k)}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-d5077a9fa6568b65fcbcaa37a1c2609e_l3.png)
![Rendered by QuickLaTeX.com q_{1,i}^{(l)}>0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-86007a431011ed900d3eb5983a14d2df_l3.png)
![Rendered by QuickLaTeX.com Z^{(\lambda)}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-e8fd281dd504b028201ff6482b3678e2_l3.png)
For all
, we consider some integer
such that
. One can easily remark that for all
, if
then
since
![Rendered by QuickLaTeX.com i,j \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-89a6a9336c9949845484af26fdd006b1_l3.png)
(1)
![Rendered by QuickLaTeX.com i \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-89c82fcdb62cc7d8535d943baba473c2_l3.png)
![Rendered by QuickLaTeX.com Q Z^{(\lambda)} = Z^{(\lambda)}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-5e49a164e82ec457e574cf3d22cca227_l3.png)
![Rendered by QuickLaTeX.com Z^{(\lambda)}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-e8fd281dd504b028201ff6482b3678e2_l3.png)
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
![Rendered by QuickLaTeX.com \lambda](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2b5c45836864531b8e37025dabadd24a_l3.png)
Claim 3.5: Let be the diagonal matrix with diagonal coefficients
. It holds
. This gives that the eigenvalues associated with the p-th roots of unity of
have algebraic multiplicity
and the spectrum of
is invariant under rotation of angle
.
(2)
![Rendered by QuickLaTeX.com q_{i,j}=0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-b4d46a7fc2d7aa6e95eafd5fd0c109e5_l3.png)
![Rendered by QuickLaTeX.com i,j \in [d]](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-89a6a9336c9949845484af26fdd006b1_l3.png)
![Rendered by QuickLaTeX.com q_{i,j} \neq 0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-ca8245ed55f1106ae2470f8177731383_l3.png)
![Rendered by QuickLaTeX.com z_j^{(\lambda)} = \lambda z_i^{(\lambda)}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-583a4fc80179bae1ae957558d397782a_l3.png)
Now we prove that all p-th roots of unity are eigenvalues of
with multiplicity 1. Let us consider some p-th root of unity
. Denoting for any
the cofactor of some matrix
at location
, one can easily check that
![Rendered by QuickLaTeX.com \mathrm{Tr}(P) \neq 0](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-65e702841b7ceed73397f8173e7dd0ca_l3.png)
![Rendered by QuickLaTeX.com \lambda](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2b5c45836864531b8e37025dabadd24a_l3.png)
Let us consider some eigenvalue
of
. We set
and
the diagonal matrix with diagonal coefficients
. Then,
![Rendered by QuickLaTeX.com \mu](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-461fe1a58a75801541487ddf10d32abd_l3.png)
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
![Rendered by QuickLaTeX.com Q](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-2c758bec4c272382411b95fc0e7ee250_l3.png)
![Rendered by QuickLaTeX.com \frac{2\pi}{p}](https://quentin-duchemin.alwaysdata.net/wiki/wp-content/ql-cache/quicklatex.com-6f4c44b23a6589412a82312db12488e9_l3.png)
Extension of the Theorem
The Krein–Rutman theorem is a generalisation of the Perron-Frobenius theorem to infinite-dimensional Banach spaces and complex integral operators.