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Exercise 1

We recall some useful results for the exercise :

Theorem 1. Let X be a set.
If (Py)i>o is a sequence of p.d. kernels that converges pointwisely to a function P, then P is a p.d. kernel.

Theorem 2. Let X be a set.

If P, : X >R and Py : X — R are p.d. kernels, then Py + P is a p.d. kernel. A trivial induction gives us that for any

finite family of p.d. kernels (P;)icq1,n] (n €N), S P is ap.d kernel.
Theorem 3. Let X be a set.

If P: X = Ris a p.d. kernel, then P? (understood as the Hadamard product) is a p.d. kernel. A trivial induction gives

us that P* is a p.d. kernel for all k € N.
1. e The kernel

K:RxR—=R
(z,y) = cos(z —y)
is clearly symmetric since the function cosinus is an even function.

e Let NeN, ()N, € RN and (z;)¥, € RV,

We recall the usual identity for the cosinus of a difference : V(a,b) € R?, cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

which leads to :
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2. e Let X = {x € R? : ||z||2 < 1}. The kernel
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Hence, the kernel K is positive definite.

K: X xX—>R
1
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is symmetric since V(x,y) € X2, 2Ty = yTz.
e We denote by K the linear kernel on X, i.e.

K:XxX =R
(z,y) = 2Ty
We remark that V(z,y) € X2, the Cauchy-Schwarz inequality gives us |v7y| = | < x|y >re | < ||2]]2-]|y|l2 < 1 by

definition of the set X'. This fact allows us to express the kernel K using the Taylor series expansion of the function
fl@) = = =0 an, Vo €] - 1, 1],

n=0

Thus K(z,y) = nll}rfoo Yo (K (z,y))k.

e We know from the course that the Hadamard product of two p.d. kernels is a p.d. kernel. By induction, we
get that for all k € N, the kernel (z,y) — K(z,y)* is a p.d. kernel (x) (since the linear kernel is a p.d. kernel).
This is the theorem (3).

e We know form the course that the sum of two p.d. kernels is a p.d. kernel. Thus, by induction, for all n € N,
> oK (z,y))¥ is a p.d. kernel using ().

e Using the theorem 1, K(z,y) = lim >.}_,(K(z,y))* is a p.d. kernel using the previous item.

n—-+oo
Hence, the kernel K is positive definite.

3. e Let (2, A4, P) a probability space. The kernel

K:AxA—R
(A,B) — P(AN B) — P(A)P(B)

is clearly symmetric.

e We remark that for all (4, B) € A2,

P(AN B) - P(A)P(B) = E[Lans] — El14
=E[141p] —E[1l4
=Cov[la,1p] (%)

Let N € N, (041')71,‘\;1 € RN and (Az)fil € AN

Using (*) and the bilinearity of the Covariance, we have :

N N N N
3N i K(Ai Aj) = >3 aiaCovlla,, 1a)]
1=1j=1 i=1j=1

N N
= Cov [ZailAi , Zalej]
i=1 j=1
ZailAi]
i=1
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Hence, the kernel K is positive definite.



4. e Let X be a set and f,g: X — Ry two non-negative functions.
The kernel

K: XxX—R
(z,y) = min{f(z)g(y), f(y)g(z)}

is clearly symmetric.

e We adopt the convention that for all a € R, % = 0. This convention allows us to have for all (z,y) € X,

K(a,y) = min{ f(2)g(v), FW)ga)} = — = min { f@) 1) }

We have used the fact that f and g are non negative. Moreover, the convention adopted makes this equality holds
even when g(z) =0 or g(y) = 0.

Using this reformulation we have :

1
=<t—=——1 oy [t —=1 >
g o< |7 gy tesien
where < .|. > denotes the usual scalar product on L?(R.).
Let N €N, ()Y, € RY and (z;)¥, € &N,
Using and the bilinearity of the scalar product, we have :
N N 1 1
ajo; K(x;,x4) o <t ——1 f(T) |t+—>7 )
Z;; ’ ’ ;; ! g(xi) <) glay) <y~
Yoo
=<t aii it — —— £(zj)
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N 1 2
= ||t — ai—1, sy
; “g(xi) T UsaEn |
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Hence, the kernel K is positive definite.
5. We consider a non-empty finite set £ and we define VA, B C E, K(A,B) = ﬁg—g with the convention % =0. We
note n = |E|.

We start by doing to useful remarks for what follows.

e Remark 1: We know that Vz € [0, 1], ',:OE k= ﬁ as the sum of a geometric sequence.

e Remark 2: If we consider A, B C E with A or/and B different from 0, n = |E| > |A°N B¢| (where A° = E\A).
With the first remark we are allowed to write in this case :

+oo 2\ K
|A¢ N B€| 1
Z n - 1 — lA°nBe| (*)

k=0 n



Please note that if A or B is the empty set, then K(A,B) = 0. Thus, without loss of generality, we will
suppose from now that the subsets of E considered are non empty. Thus, we have :

ANB

K(A,B):AuB:
_ ‘AﬂBl : c __ c c
_n_|Acch‘,smce (AUB)" = A°Nn B“.

_|AnB| 1
T ] BB

k
_ |AN B X*i |A¢ N Be|
o n n

k=0

We define the functions :

K1 : P(E) x P(E) — R
(C,D) @

and

Ks: P(E) x P(E) - R

K; and K5 are two positive definite kernels. In order to justify this claim, we endow (E,P(FE)) with the uniform
probability distribution denoted P. Then, for all (C, D) € P(E)?,

xuc.p) ~ €0l
n

E[lch] =<1c | 1p > (*)

where < . | . > denotes the usual scalar product for L? random variables.
Thanks to the Aronszajn’s theorem, we deduce from () that K; is a positive definite kernel.

The same argument also holds for Ky since Ko(C, D) =< 1¢c | 1pe >. Thus, K3 is also a positive definite kernel.
We can now prove that K is a positive definite kernel. Indeed :

e Using the theorem (3) and since K3 is a p.d. kernel, we have that for all k € N, K} is a p.d. kernel.

e Then, using the previous item and the theorem (2), we get the for all N € N, fo:l K% is a p.d. kernel.
e Using the previous item, the theorem (1) and the equality (x), we know that the kernel

A°n B° 1 )
Ks —ZKQ : AB HZ( |> :Wlsap.d. kernel.

° Fmally, since K7 and K3 are p.d. kernels and since K = K; K3 (hadamard product), we have using the theorem
(3) that K is p.d. kernel.

Hence, K is a positive definite kernel.



Exercise 2

1. K7 and K> are two positive kernels and «, 5 are two positive scalars. We deduce that K7 and 5K, are two positive
kernels (as the multiplication by a positive scalar of a positive kernel). Then, we have that aK; + 5K is a positive
kernel as the sum of two positive kernels (using theorem (2)).

We denote H; (resp. Hz) the RKHS associated with the p.d. kernel K; (resp. K3). We note < .|. >1 (resp. < .|. >2)
the scalar product associated with H; (resp. Ha).
e First we look at the topology of H; + Ho. We denote £ = Hq x Hsy. This set is a Hilbert space if we equip it
with the norm .5 : (f1, f2) = \/ 2111} + 31213

We want to compare the topologies of Hi + Ho and E. A direct link between these spaces is the natural
surjection

s: E— Hi+Ho
(fi,fo) = fi+ f2

We are going to try to make s injective. In order to do so, let’s consider N = s~1({0}). We will begin by
proving that N is a closed subset of E:

Let (fn, —fn) be a sequence of elements of N converging in E to (f, g). By definition of the norm ||.||z, (fn)n>1
converges in Hq to f and (—f,)n>1 converges in Hs to g. Since convergence in a RKHS implies ponctual
convergence, we will have f = —¢g an therefore (f,g) € N. N _is therefore a closed subset of F.

Since N is closed, E is equal to the direct sum of N and its orthogonal complement N-. The restriction § of
s to N+ will therefore be a bijection.
Now that we have a linear bijection, we can equip ‘H = H; + H2 with an Hilbertian structure inherited from
E. With the norm ||.||3 : f = ||57Y(f)||g, H1 + Hz is indeed a Hilbert space.

e It is obvious that for all z € X, K, = K(z,.) = aKi(z,.) + fK3(z,.) belongs to X = H; + Hz (since
Ki(z,.) € Hq and Ka(x,.) € Ha by the definition of the reproducing kernel of a RKHS).

e In fact, to prove that H = H; + Ho endowed with the norm we just defined is the RKHS of aK; + SK5, we
still need to prove the reproducing property: let « € X and f € H = Hq + Ha. We can write f = 3(f1, f2) and
K, = 5(A., B,) where (f1, f2) and (A,, B,) live in Nt. Thus,

< fi Ky > 4m.=< (f1, f2), (A, Be) >=< (f1, f2), (aK14, BK3,) + (Az — K14, By — BK2,) >E

but, since s(4, — aKi,, By — fKa,) = Ar — Ky, + B, — fKs, = K, — K, = 0, we have that the vector
(A, — aKy,, B, — BK»,) belongs to N. Therefore, it is orthogonal to every element in N+, and in particular
to (f1, f2). Consequently, < f, K, >3=< (f1, f2), (aK;(z,.), BK2(x,.)) >g= f1(z) + fo(x) = f(z)

and the reproducing property is true.

[ H = Hy + Hs is therefore the RKHS of a K + SKs. ]

2. We consider ¢ : X — F where F is a Hilbert space. The kernel

K: XxX—=R
(z,2") < P(x), (") >F
is positive definite as a direct consequence of the Aronzsajn’s theorem.

We are now going to show that the RKHS associated to positive definite kernel K is the image of the operator T’
defined by :

VfeF, Tf:X—R
z = (Tf)(x) =< f,¢(x) >F

First, we recall a result seen during the class which will be the cornerstone of the proof :



Theorem 4. Any kernel K : X x X — R positive definite is a reproducing kernel.

Useful elements of the proof for what follows :

We define Hq the vector space spanned by the functions K, for x € X. The scalar product on Hg is given by :

< f,g >7.[0: Zaiij(xi,xj)
0,J
where we have decomposed f and g as f =Y . a; K, and g = Zj bj K., (we proved in class that the definition is

independent of the decomposition). Then, the RKHS H related to the kernel K is obtained by taking the completion
of Ho to a Hilbert space.

Now, we have all the tools to prove our claim :

[ Hy = Im(T) = {Tf , f € F}. ]

e Ho C Im(T).

Indeed, let z € X. For all y € X, K, (y) =< ¥(z),¥(y) >r= (T¥(x))(y). So Im(T) contains all the functions
K, for x € X. Since Im(T) is a linear space, then linear span of {K,, x € X'}, that is Hg, will be in Im(T).

e T : Span(y(x), x € X) — Ho is isometric.
Since for all z € X, T (x) = K,, we have T (3~ az¢(x)) = > a, K,. Hence,

<T (Z Oéxl[/(x)) T (Z 53;1//(3/)) >Ho =< ZawKwZﬂyKy >Ho

= Z a8y K (2, y) using the construction of < .,. >y, recalled in theorem 4
.y
= Zamﬁy < 1/J(l’)>1/}(l/) >F
z,y
=< ant(z), Y Byt(y) > .
z Y
This proves that T : Span(y(x), x € X) — Ho is isometric.

Clearly, T(Span(w(x), x € X)) =Ho.

o F = ker(T) @ker(T)* with ker(T)* = Span(y(z), x € X).
— Let f € ker(T).
So, Tf=01e (Tf)(x) =< f,(x) >r=0Vx € X. Since T is linear, this means that f L Span(y(z), x €
X), ie.
ker(T) C Span(¢(z), x € X)*.
— Let f € Span(y(x), z € X)*+ = {¢(z),z € X}+.
Then, for all z, 0 =< f,¢(x) >r= (Tf)(z) = Tf =01ie. f€ker(T). Hence :
Span(y(x), x € X)* C ker(T).
This proves that :

ker(T) = Span(3(x), x € X)*.



— By the previous item,

ker(T)* = (Span(¥(z), = € ./'\,’)L)L = Span(Y(z), z € X)

This shows in particular that ker(7T")* is closed.
We are able to write

F = ker(T) @) ker(T)*.

e Since T : Span(y(x), © € X) — Hop is isometric and surjective, and since Hy is dense in Hy (by construction:
see theorem (4)), it follows that T : Span(¢¥(z), © € X) — Ho = Hx is surjective ((x), see below for further

=ker(T)+
justification). Hence, we have :

M = T(ker(T)") = T(ker(T) P ker(T)") = T(F) = Im(T).

Comments

This result of the question 2 allows us to have another point of view on a RKHS. Indeed, we have shown that for a
kernel K defined by a feature map v, the RKHS related to K is :

Hi =Im(T) ={x —< f,¢(z) >F such that f € F}.

This representation implies that the elements of the RKHS are inner products of elements in the feature space and
can accordingly be seen as hyperplanes.

Further justification for (x).

T : Span(v(x), x € X) — Hy is isometric, and linear. We can thus apply the theorem to extend linear function
uniformly continuous (here, T' is uniformly continuous because isometric). So, we can extend T as a linear isometry
on Span(¢(z), x € X). We still call this new function 7. The miracle is that this function T is in fact surjective in
Hyg.

Indeed, let g € Hx. Since Hy is dense in H g, there exists a sequence (gy), in Ho such that ||g, — g||2, — 0. Since
T : Span(y(z), x € X) — Hp is surjective, for all n € N, there exists f,, € F such that T'f, = g,,. Since (g, )n is
convergent, it is in particular a Cauchy sequence and the fact that T is isometric gives us that for all n,m € N,

l9m = gnlle = [T fim = T fullro = 1T (fn = Fu)llato = [|fm = full7-

Hence, (fn)n is a Cauchy sequence in the Hilbert space F. Hence, it converges to some f € F. But, since
(fn)n € Span(¥(x), x € X)N, we have that f € Span(¢(z), * € X). Hence, g € Hx admits the preimage f by T
which belongs to Span(y(x), z € X).




Exercise 3

1. We recall a theorem studied in class :

Theorem 5. The Hilbert space H C RY is a RKHS if and only if for any x € X, the mapping

F,:H—R
e f(z)

15 continuous.

In our case, H={f:[0,1] — R absolutely continuous , f’ € L*([0,1]), f(0) =0} endowed with the bilinear form :
vage}h <fag>7-l fo du

e H is a prehilbert space of functions

— H is a vector space of functions and < .,. >4 is a bilinear form that satisfies < f, f >%> 0.

- f abbolutely continuous on [0, 1] implies differentiable almost everywhere and Vz € [0,1], f(z) = f(0) +
Jo J'(w)du. Hence:

VieH Mee 0] f@I=If@ - f0) \—\/f du|</|f |du</\f )l du

=0 since feH
1
- / VIF(@)Rdu < / F1(u) 2du =< f, f > 1)

where the last inequality is obtained by using the Jensen inequality with the concave function t — /%.
Therefore < f, f >4y=0 = f =0, showing that < .,. >4 is an inner product. Thus, H is a preHilbert
space.

e H is a Hilbert space

Let (fn)nen a Cauchy sequence of H. Then, (f,)nen is a Cauchy sequence of L?([0,1]) (by definition of the
norm on H), and thus convergences to some g € L?([0,1]) for the norm ||.||z2 (by completeness).

Using the inequality (1), for all € [0,1], (fn(2))nen is a Cauchy sequence of R which is complete and thus
converges to some f(z). Moreover,

f@)= lim f,(z)= lim /f du—/ g(u)du

n—-+oo n—-+oo

where we have used an interversion between limit and integral which is possible thanks to the L? convergence
of (f/)n to g. This shows that f is absolutely continuous and f’ = g almost everywhere, in particular,
fre L2([0,1)).

Pinally, /(0) = lm_f(0) = 0. Therefore, € H and T _[|f — flls = 175 — gllz= = 0
We have proved then H is a Hilbert space.

e His a RKHS
Let € [0,1]. For all f € H,

[F (Pl = 1f(@)] < |If]l3 using (1).

Since the mapping F, is linear, the above inequality proves that for all x € X', F), is continuous. We deduce
that H is a RKHS with the theorem 5.



e Reproducing kernel of H

Consider the function

K:[0,1] x [0,1] =R

. oy ify<z
(m,y)l—)mln(m,y)—{ T lfIESy

For all z € [0, 1], the function K, : t — K(z,t) belongs to H because :
— it is absolutely continuous on [0, 1] since :
* K, has derivative almost everywhere (except in x)
x K is Lebsgue integrable
Ve [0,1], K, (t) = K,(0) + [3 KL (u)du
— K, = 10,5 which belongs to L([0,1])
— and we finally have K,(0) = 0.
Moreover for all z € [0,1] and for all f € H, < f, K, >= fo w) K. (u)du = fo wlpzdu = [ f'(u
flz)— f\(gz = f(x). So the reproducing property holds.
=0

Hence, K is the reproducing kernel of the RKHS H.

2. We consider now H = {f : [0,1] = R absolutely continuous , f € L*([0,1]), f(0) = f(1) = 0} endowed with the
bilinear form : Vf,g € H, < f,g>n= fo u)du.

e H is a prehilbert space of functions

H is a vector space of functions and < .,. >4 is an inner product thanks to the previous question. Thus, H is
a preHilbert space.
e H is a Hilbert space

Let (fn)nen a Cauchy sequence of H. Then, (f,)nen is a Cauchy sequence of L?([0,1]) (by definition of the
norm on H), and thus convergences to some g € L?([0, 1]).

Using the inequality (1), for all € [0,1], (fn(z))nen is a Cauchy sequence of R which is complete and thus
converges to some f(z). Moreover,

fa)= lm_fu(e) = lim_ / F1(w)du = / g(u)du

where we have used an interversion between limit and integral which is possible thanks to the L? convergence
of (f!)n to g. This shows that that f is absolutely continuous and f’ = ¢ almost everywhere, in particular,

e L2([0,1]).
Finally, f(0) = mf fn(0) = 0 and f(1) = hrf fn(1) = 0. Therefore, f € H and hm lfr — flln =
n—-+0o0 n—-+0o0
1f7 = gll= = 0.
o His a RKHS

The computations derived in the previous question to show that the mapping F, is continuous for all z € [0, 1]
still hold by definition of H (which is included in the Hilbert space studied in the previous question). Thus,
using the theorem 5, we have that H is a RKHS.

e Reproducing kernel of H

Consider the function

K:[0,1]x[0,1] =R

(1-2)y ify<zx
(m,y)r—>{ —z(y—z)+ (1 —xz)z ifz<y

For all z € [0, 1], the function K, : ¢t — K(z,t) belongs to H because :



— it is absolutely continuous on [0, 1] since :
* K, has derivative almost everywhere (except in x)
x K is Lebsgue integrable
YVt € [0,1], K, (t) = K. (0) + [y K. (u)du
- K, =(1—-2)1g. — xl[myl] which belongs to L?([0,1])
— and we finally have K,(0) = K,(1) = 0.

Moreover for all z € [0,1] and for all f € H, < f, K, >x= fo wydu = [ f'(u)(1—z)du— f f(u)xdu =
(I =2)(f(z) = f(0)) —z(f(1) —f(z)) = f(x). So the reproducmg property holds.
>

Hence, K is the reproducing kernel of the RKHS #.

3. We consider now H = {f : [0,1] = R absolutely continuous f € L*([0,1)]), f(0) = f(1) = 0} endowed with the
bilinear form : Vf,g € H, < f,g>y= fo u) + f'(u)g' (u))du.

e H is a prehilbert space of functions

— H is a vector space of functions and < .,. >y is a bilinear form that satisfies < f, f >#> 0.

- f absolutely continuous on [0, 1] implies differentiable almost everywhere and Vz € [0,1], f(z) = f(0) +
Jo f'(u)du. Hence:

VEER, If@l=If@ - f0) I*I/f du|</|f |du</|f )| du

=0 since feH

= | VIFGPa = / VIFGP + 1) Pdu

since /- is an increasing function

\// /()2 + | f(u)Pdu =< f, f >3/ (2)

where the last inequality is obtained by using the Jensen inequality with the concave function t — /%.
Therefore < f, f >4=0 = f =0, showing that < .,. >4 is an inner product. Thus, H is a preHilbert
space.

e H is a Hilbert space

Let (fn)nen a Cauchy sequence of H.

— (fa)nen and (f))nen are Cauchy sequences in L?([0,1])
(fa)nen (resp. (f!)nen) is a Cauchy sequence of L2([0,1]) (by definition of the norm on #), and thus
convergences to some go € L?([0,1]) (resp. g1 € L*([0,1])) .

— Theorem : Convergence in L?([0,1]) = Convergence in D’([0, 1])
Let ¢ € D([0, 1]) with compact support K, and (hy,)nen a sequence of L?([0, 1]) converging to h € L*([0,1]).
Since h,h, € L}, .([0,1]), we can consider the distributions induced by these functions. Moreover, the
Cauchy Scharwz inequality gives us :

[0,1]

Thus, (hy,), converges to h in the distribution sens.

|<h7hn7¢ >D’,D|: S|‘h_hn|LZ||¢HLZ

— gb = g1 in the distribution sens and then in L2.
Using the previous item, we get that f, — go in D'([0,1]) and f], — ¢1 in D'([0,1]). From f, — go in
D'([0,1]), we deduce that f; — g{ in D’'([0,1]). Using the uniqueness of the limit in D’'([0,1]), we have
gh = g1 in the distribution sens. Since g; € L?(]0,1]), we can deduce that g € L?([0,1]), and that the
equality gj = g1 is also true in L%([0,1]).

We have shown that f,, — go and f}, — g{ in L. Thus, f, — go in H. We only need to show that go belongs
to H, which is true since :

10



— The inequality (2) gives that convergence in H implies pointwise convergence. Thus, go(0) = lir+n fn(0) =
n—-+0oo
/ _ 3 —
0 and gy(1) = nll)rfw fn(1) =0.
— We have already shown that g, = g1 € L?([0, 1]).
— Finally, go is absolutely continuous since go(z) = / go(u)du.
0

e His a RKHS
Let x € [0,1]. For all f € H,

[Ex ()] = [F(@)] < || f]l3 using (2).

Thus, using the theorem 5, we have that H is a RKHS.

e Reproducing kernel of H

Consider the function

K:[0,1]x[0,1] =R

/
(z,y) = (t et (- e ) - 1) (y) ify<az

0 ife<y

i.e.

K:[0,1] x [0,1] R

Y IS Bl NGy fy<a
’ 0 ifx <y

For all z € [0, 1], the function K, : t — K(z,t) belongs to H because :

— it is absolutely continuous on [0, 1] since :
* K, has derivative almost everywhere (except in x)
x K is Lebsgue integrable
YVt e [0,1], K, (t) = K, (0) + [5 KL (u)du

- Vyel0,1], KL(y) = ( —sin(y) + 1;;0&(;“) Cos(y)> 1(0,4](y) which belongs to L*([0,1])
— and we finally have K,(0) = K,(1) = 0.

Please note that the function K, has been built such that P(K,) : y — [/ K, (t)dt is a solution of the equation
9" (y) —g(y) = 1 on [0,z] with the conditions g(0) = 0 and g(z) = 0 (*). Then for all z € [0,1] and for all
fetH,

11



< Ky = / Ko (u) f () + F () K ()

1
= / K, (u)f(u)du +/ J'(u)K! (u)du, and using an IPP in the first integrale we get

[/K Ydtf (u —/ /K dtdu+/f K’)du

77’(K )" (u)
=0 since f(0)=f(1)=0
- [ rw (P(Ka”(u) - P(K@(u)) du
0
=1 using
=flz)—  f(0)
=0 since feH
= f(x)
So the reproducing property holds.
Hence, K is the reproducing kernel of the RKHS H.
Exercise 4: Duality
1. We are considering the following optimization problem
frg?l-tnxﬁ Zl% x;)) such that || f||x, < B.
which is equivalent to
frg}{n - Zl% (z;)) such that ||f[|3,,. < B> (3)

Dualizing the constraint involved in (3), we get that the problem (3) is equivalent to :

! D)+ A - B? 4
ffngai‘;%nz% 7)) + M1 B = B). W

Since the function [, is convex for all y € {—1,+1}, we deduce that the optimization problem (4) is a convex
optimization problem and qualification holds (since there is no constraint). Thus, strong duality holds. Thus,
the problem (4) is equivalent to

— A - B?
sup fréli&nz " ) + A f 15, — B?)-

The KKT conditions give us that there exists A* > 0 such that (4) is equivalent to

1
it * — B%) = v 2
Join nZz% (2:)) + A" (1 e = B2) = goin ~W(f(1), o, Fn), 1 ). (5)

where U : R®t! — R is a function of n + 1 variables, strictly increasing with respect to the last variable. Since K

is the reproducing kernel of the RKHS H g, we have thanks to the representer theorem that a solution f of the
optimization problem (5) can be written of the form :
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f(@) =3 aika (@), ()i, €R".

Denoting K the matrix of size n x n : (K(x;,%;))1<i,j<n, We have that :

o Vi€ [1,n], f(x;) = (Ka); where a denote the vector (a;)™ ;.

o [l = oa"Ka.

The optimization problem (5) is hence equivalent to

a€eRn N 4 a€eRn

min 1 Z l,,(Ka);) + M (a"Ka — B?) = min R(Ka) + \* (o’ Ka — B?), (6)
i=1

where R(z) = 37" 1, (2), Vz€eR™
. We compute the Fenchel-Legendre transform of R. Let z € R™,
R*(z) = sup < x,z > —R(z)

rER™

1 n
=sup <zx,2>—— Z ly, (x;), here we remark that the problem is separable
n &

zeR”™ i—1
n 1
= Z sup |x;zi — —ly, (x;)
i=1 \ %i€R n

. We add the slack variable v = Ka in the optimization problem (6). The problem (3) can thus be written as :

ERI’r}ineR"R(u> + M (a’Ka — B?) such that v = Ka. (7)

The dual of the problem (7) is :

sup min _ R(u) + M (aTKa — B?) + uT (Ko — u)

peRn  a€R™ uERn
R(u) — ,uTu] )

e Since the minimization problem in « is an unconstrained convex optimization problem, an optimal solution is
given by setting the gradient to zero which leads to 2A\*Ka = Ku. Thus, all the optimal solution have the form

a = 355 + € with € € Ker(K), but all those solutions lead to the same function f since K(g55 +€) = K55=.

which is equivalent to

+ min
ueR™

sup (min [)\*(aTKa - B 4 p"Ka
neR™ a€eRm

e min
u€eR™

= —R*(n).

R(u) — /LTU‘| = —sup [MTU — R(u)

uER™

We deduce that the above optimization problem is equivalent to

1 1
sup uTKp + pTKp — R*(p) — A*B% = sup

T * * 2
TRy — R*(u) — \*B2.
A 22" sup et Ku = E)
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A solution (o, u) from (7) can be easily computed from an optimal solution p of this dual problem with : a = =

and u = Ka = 5-Kyu. We could have a large choice for a (adding any element of Ker(K)) but all of them will
lead to the same solution of the original problem defined by : f(.) = > a; K (z,.).

. We are now going to the use the previous work to derive the dual problem of the logistic and the squared hinge
losses.

e Logistic loss
We consider the losses [, (u) = In(1 4+ e~*) for y € {—1,41}. For a given y € {—1,+1}, we compute the
Fenchel-Legendre transform of [,:

Vv €R, [(v) = Slelg wv —In(1 4+ e ™)

First, we remark that

+oo if (v>0andy=1)or (v<0andy=-1)
v)y=¢ 400 if(v<—-landy=1)or (v>1andy=—1)

0 ifv=0or(v=-landy=1)or (v=1and y=-1)
The justifications are given at the end of this document.
We consider now that we are in one of the two remaining cases: (-1 < v <0 and y =1) or (0 < v < 1 and
y=—1).
The function u — uv — In(1 + e~"¥) is a concave function. We solve the supremum problem by setting the
gradient of this function to O :

ye Y _ -1 —v —v
v+ ——- =0 Yoty =—vSu=—In = —yln .
14+ e vy ( v) Y (v+y> Y (11+y>

Hence, in those cases, we have [ (v) = —yvIn (;ﬁ’y) —1In(1 — viy) = —yvln (U;vy> — ln(v_-’{ry).

Thus, the dual problem takes the following form with the logistic losses :

3 7 1 ¢ 2
Ky — — E l* i) —\B
uSéIRRL 4)\*'u H n = i (ngs:)

i.e.

3 7 1 — —TN g Yi 2
su Kupu— — —ynu;In[ ———— ) —In [ ———— — \*B
HeRPn 4\* pe B n Z ( Yamus (n,ui = yz> (TL:U'i + yi

i=1
st. — 1 <nyp <0, Vi€ [1,n]

e Squared hinge loss

We consider the losses I, (u) = max(0,1 — yu)? for y € {—1,+1}. For a given y € {—1,+1}, we compute the
Fenchel-Legendre transform of [,:

Vv €R, [} (v) = sup uv — max(0,1 — yu)?

u€EeR
We have :
. +o0 if(uv>0andy=1)or (v<0and y=—1)
ly(v) = 1 (2y+v)2 .
—1+ =~ otherwise

Thus, the dual problem takes the following form with the squared hinge losses :
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sup

3 T 1 - * * D2
1 K/’L_ﬁ;lgh(nui)_)\B

peRrn 4X*
i.e.
3 7 1¢ (2yi + npa)® 2
Ku— - g GHTRN)T) g
ap o 13 (<
=1
sty <0, Vi € [1,n]
ie.

3 T T [y * 2
Ky — - — —\*B

st yip; <0, Vi € [1,n]

Justification of the Fenchel-Legendre transforms for the Exercise 4
Logistic Loss

+oo if (v>0andy=1)or (v<0andy=-1)
Dvy=¢ +o0o f (v<—-landy=1)or (v>1and y=—1)
0 ifv=0or(v=-landy=1)or (v=1and y=-1)

We justify those points :

elfv>0andy=1, lim w—In(l4+e )= lim wv—In(l+e ") =+oc0.

i
U—r—+00 Uu—+00

e Ifv<Oandy=-1, lim w—In(l+e™)= lim wv—In(l+e") =400

U—r—00 U—r—00

elfv<—landy=1,w-Inl+e ™) =uw-In(l+e ™) =w+u—Ine"+1) ~ wulv+1). Since v < —1,
U——00
lim wo—In(l+e ") = 4o0.
U—r—00

elfv>landy= -1, uww—In(l+e ™) =w-In(l+e*)=uw—-—u—In(e*+1) ~ wulv—1). Since v > 1,

u—-+00
lim wv—In(1+e ") = +c0.

u——+00
e lfv=—landy=1,uv—In(l+e ") =—u—In(l+ e %) which is always non positive and which takes the value
0 for u=0.

elfv=1landy=—-1, uv—In(l+e ™) =u—In(l+e*) = —1In(1+ e ") which is always non positive and which
takes the value 0 for v = 0.

Squared Hinge Loss

() = +00 if(v>0andy=1)or (v<0andy=-1)
vl -1+ M otherwise
Indeed :
elfv>0andy=1, lim wv—max(0,1—yu)?>= lim wuwv— max(0,1—u)? = +oo.
uU—+00 uU—+00

e Ifv<Oandy=—1, lim wv—max(0,1—yu)?>= lim wuv— max(0,1+ u)? = +oo.
U——00 U——00
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e The function u — uv — (1 — yu)? = —1 — u? + u(v + 2y) (since y? = 1) reaches its maximum at u* = 23’% Let’s
prove that u* is such that 1 — yu* > 0 in the cases (v <0 and y = 1) and (v > 0 and y = —1). We will then deduce
directly that I} (v) = u*v — (1 — yu*)? in those cases.

—If(v<O0andy=1),

2
1fyu*20<:>12u*<:>12#<:>v§0

—If (v >0andy=-1),

l-yu* >0 -1<u" & -1<

-2
;—v@vZO

Hence, (0) = u'v — (1 — yu*)? = —1 4 Cufe)’
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