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Exercise 1
We recall some useful results for the exercise :

Theorem 1. Let X be a set.
If (Pi)i≥0 is a sequence of p.d. kernels that converges pointwisely to a function P , then P is a p.d. kernel.

Theorem 2. Let X be a set.
If P1 : X → R and P2 : X → R are p.d. kernels, then P1 + P2 is a p.d. kernel. A trivial induction gives us that for any
finite family of p.d. kernels (Pi)i∈J1,nK (n ∈ N),

∑n
i=1 Pi is a p.d. kernel.

Theorem 3. Let X be a set.
If P : X → R is a p.d. kernel, then P 2 (understood as the Hadamard product) is a p.d. kernel. A trivial induction gives
us that P k is a p.d. kernel for all k ∈ N.

1. • The kernel

K : R× R→ R

(x, y) 7→ cos(x− y)

is clearly symmetric since the function cosinus is an even function.

• Let N ∈ N, (αi)
N
i=1 ∈ RN and (xi)

N
i=1 ∈ RN .

We recall the usual identity for the cosinus of a difference : ∀(a, b) ∈ R2, cos(a − b) = cos(a) cos(b) + sin(a) sin(b)
which leads to :

N∑
i=1

N∑
j=1

αiαjK(xi, xj) =

N∑
i=1

N∑
j=1

αiαj cos(xi − xj)

=

N∑
i=1

N∑
j=1

αiαj (cos(xi) cos(xj) + sin(xi) sin(xj))

=

N∑
i=1

N∑
j=1

αiαj cos(xi) cos(xj) +

N∑
i=1

N∑
j=1

αiαj sin(xi) sin(xj)

=

(
N∑
i=1

αi cos(xi)

)2

+

(
N∑
i=1

αi sin(xi)

)2

≥ 0

Hence, the kernel K is positive definite.

2. • Let X = {x ∈ Rp : ||x||2 < 1}. The kernel

K : X × X → R

(x, y) 7→ 1

1− xT y
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is symmetric since ∀(x, y) ∈ X 2, xT y = yTx.

• We denote by K the linear kernel on X , i.e.

K : X × X → R

(x, y) 7→ xT y

We remark that ∀(x, y) ∈ X 2, the Cauchy-Schwarz inequality gives us |xT y| = | < x|y >Rp | ≤ ||x||2.||y||2 < 1 by
definition of the set X . This fact allows us to express the kernel K using the Taylor series expansion of the function
f(x) = 1

1−x =
∑+∞
n=0 x

n, ∀x ∈]− 1, 1[.

Thus K(x, y) = lim
n→+∞

∑n
k=0(K(x, y))k.

• We know from the course that the Hadamard product of two p.d. kernels is a p.d. kernel. By induction, we
get that for all k ∈ N, the kernel (x, y) 7→ K(x, y)k is a p.d. kernel (∗) (since the linear kernel is a p.d. kernel).
This is the theorem (3).

• We know form the course that the sum of two p.d. kernels is a p.d. kernel. Thus, by induction, for all n ∈ N,∑n
k=0(K(x, y))k is a p.d. kernel using (∗).

• Using the theorem 1, K(x, y) = lim
n→+∞

∑n
k=0(K(x, y))k is a p.d. kernel using the previous item.

Hence, the kernel K is positive definite.

3. • Let (Ω,A, P ) a probability space. The kernel

K : A×A → R

(A,B) 7→ P (A ∩B)− P (A)P (B)

is clearly symmetric.

• We remark that for all (A,B) ∈ A2,

P (A ∩B)− P (A)P (B) = E[1A∩B ]− E[1A]E[1B ]

= E[1A1B ]− E[1A]E[1B ]

= Cov[1A,1B ] (∗)

Let N ∈ N, (αi)
N
i=1 ∈ RN and (Ai)

N
i=1 ∈ AN .

Using (∗) and the bilinearity of the Covariance, we have :

N∑
i=1

N∑
j=1

αiαjK(Ai, Aj) =

N∑
i=1

N∑
j=1

αiαjCov[1Ai
,1Aj

]

= Cov

[
N∑
i=1

αi1Ai
,

N∑
j=1

αj1Aj

]

= V ar

[
N∑
i=1

αi1Ai

]
≥ 0

Hence, the kernel K is positive definite.
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4. • Let X be a set and f, g : X → R+ two non-negative functions.
The kernel

K : X × X → R

(x, y) 7→ min{f(x)g(y), f(y)g(x)}

is clearly symmetric.

• We adopt the convention that for all a ∈ R,
a

0
= 0. This convention allows us to have for all (x, y) ∈ X ,

K(x, y) = min{f(x)g(y), f(y)g(x)} =
1

g(x)g(y)
min

{
f(x)

g(x)
,
f(y)

g(y)

}
.

We have used the fact that f and g are non negative. Moreover, the convention adopted makes this equality holds
even when g(x) = 0 or g(y) = 0.

Using this reformulation we have :

K(x, y) = min{f(x)g(y), f(y)g(x)}

=
1

g(x)g(y)
min

{
f(x)

g(x)
,
f(y)

g(y)

}

=
1

g(x)g(y)

∫ +∞

0

1{t≤ f(x)
g(x)
}1{t≤ f(y)

g(y)
}dt

=< t 7→ 1

g(x)
1{t≤ f(x)

g(x)
} | t 7→

1

g(y)
1{t≤ f(y)

g(y)
} > (∗)

where < .|. > denotes the usual scalar product on L2(R+).
Let N ∈ N, (αi)

N
i=1 ∈ RN and (xi)

N
i=1 ∈ XN .

Using (∗) and the bilinearity of the scalar product, we have :

N∑
i=1

N∑
j=1

αiαjK(xi, xj) =

N∑
i=1

N∑
j=1

αiαj < t 7→ 1

g(xi)
1{t≤ f(xi)

g(xi)
} | t 7→

1

g(xj)
1
{t≤

f(xj)

g(xj)
}
>

=< t 7→
N∑
i=1

αi
1

g(xi)
1{t≤ f(xi)

g(xi)
}

∣∣∣∣∣
N∑
j=1

αjt 7→
1

g(xj)
1
{t≤

f(xj)

g(xj)
}
>

=

∣∣∣∣∣
∣∣∣∣∣t 7→

N∑
i=1

αi
1

g(xi)
1{t≤ f(xi)

g(xi)
}

∣∣∣∣∣
∣∣∣∣∣
2

L2

≥ 0

Hence, the kernel K is positive definite.

5. We consider a non-empty finite set E and we define ∀A,B ⊂ E, K(A,B) = A∩B
A∪B with the convention 0

0 = 0. We
note n = |E|.
We start by doing to useful remarks for what follows.

• Remark 1: We know that ∀x ∈ [0, 1[,
∑+∞
k=0 x

k = 1
1−x as the sum of a geometric sequence.

• Remark 2: If we consider A,B ⊂ E with A or/and B different from ∅, n = |E| > |Ac ∩Bc| (where Ac = E\A).
With the first remark we are allowed to write in this case :

+∞∑
k=0

(
|Ac ∩Bc|

n

)k
=

1

1− |A
c∩Bc|
n

(∗)
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Please note that if A or B is the empty set, then K(A,B) = 0. Thus, without loss of generality, we will
suppose from now that the subsets of E considered are non empty. Thus, we have :

K(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

n− |Ac ∩Bc|
, since (A ∪B)

c
= Ac ∩Bc.

=
|A ∩B|

n
× 1

1− |A
c∩Bc|
n

=
|A ∩B|

n
×

+∞∑
k=0

(
|Ac ∩Bc|

n

)k

We define the functions :

K1 : P(E)× P(E)→ R

(C,D) 7→ |C ∩D|
n

and

K2 : P(E)× P(E)→ R

(C,D) 7→ |C
c ∩Dc|
n

K1 and K2 are two positive definite kernels. In order to justify this claim, we endow (E,P(E)) with the uniform
probability distribution denoted P. Then, for all (C,D) ∈ P(E)2,

K1(C,D) =
|C ∩D|

n
= E [1C1D] =< 1C | 1D > (∗)

where < . | . > denotes the usual scalar product for L2 random variables.

Thanks to the Aronszajn’s theorem, we deduce from (∗) that K1 is a positive definite kernel.

The same argument also holds for K2 since K2(C,D) =< 1Cc | 1Dc >. Thus, K2 is also a positive definite kernel.

We can now prove that K is a positive definite kernel. Indeed :

• Using the theorem (3) and since K2 is a p.d. kernel, we have that for all k ∈ N, Kk
2 is a p.d. kernel.

• Then, using the previous item and the theorem (2), we get the for all N ∈ N,
∑N
k=1K

k
2 is a p.d. kernel.

• Using the previous item, the theorem (1) and the equality (∗), we know that the kernel

K3 :=

+∞∑
k=0

Kk
2 : (A,B) 7→

+∞∑
k=0

(
|Ac ∩Bc|

n

)k
=

1

1− |A
c∩Bc|
n

is a p.d. kernel.

• Finally, since K1 and K3 are p.d. kernels and since K = K1K3 (hadamard product), we have using the theorem
(3) that K is p.d. kernel.

Hence, K is a positive definite kernel.
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Exercise 2
1. K1 and K2 are two positive kernels and α, β are two positive scalars. We deduce that αK1 and βK2 are two positive

kernels (as the multiplication by a positive scalar of a positive kernel). Then, we have that αK1 + βK2 is a positive
kernel as the sum of two positive kernels (using theorem (2)).

We denote H1 (resp. H2) the RKHS associated with the p.d. kernel K1 (resp. K2). We note < .|. >1 (resp. < .|. >2)
the scalar product associated with H1 (resp. H2).

• First we look at the topology of H1 +H2. We denote E = H1 ×H2. This set is a Hilbert space if we equip it
with the norm ||.||E : (f1, f2) 7→

√
1
α ||f1||

2
1 + 1

β ||f2||
2
2,

We want to compare the topologies of H1 + H2 and E. A direct link between these spaces is the natural
surjection

s : E → H1 +H2

(f1, f2) 7→ f1 + f2

We are going to try to make s injective. In order to do so, let’s consider N = s−1({0}). We will begin by
proving that N is a closed subset of E:

Let (fn,−fn) be a sequence of elements of N converging in E to (f, g). By definition of the norm ||.||E , (fn)n≥1
converges in H1 to f and (−fn)n≥1 converges in H2 to g. Since convergence in a RKHS implies ponctual
convergence, we will have f = −g an therefore (f, g) ∈ N . N is therefore a closed subset of E.

Since N is closed, E is equal to the direct sum of N and its orthogonal complement N⊥. The restriction s̃ of
s to N⊥ will therefore be a bijection.
Now that we have a linear bijection, we can equip H = H1 +H2 with an Hilbertian structure inherited from
E. With the norm ||.||H : f 7→ ||s̃−1(f)||E , H1 +H2 is indeed a Hilbert space.
• It is obvious that for all x ∈ X , Kx = K(x, .) = αK1(x, .) + βK2(x, .) belongs to H = H1 + H2 (since
K1(x, .) ∈ H1 and K2(x, .) ∈ H2 by the definition of the reproducing kernel of a RKHS).

• In fact, to prove that H = H1 +H2 endowed with the norm we just defined is the RKHS of αK1 + βK2, we
still need to prove the reproducing property: let x ∈ X and f ∈ H = H1 +H2. We can write f = s̃(f1, f2) and
Kx = s̃(Ax, Bx) where (f1, f2) and (Ax, Bx) live in N⊥. Thus,

< f,Kx >H1+H2=< (f1, f2), (Ax, Bx) >E=< (f1, f2), (αK1x, βK2x) + (Ax − αK1x, Bx − βK2x) >E

but, since s(Ax − αK1x, Bx − βK2x) = Ax − αK1x + Bx − βK2x = Kx − Kx = 0, we have that the vector
(Ax − αK1x, Bx − βK2x) belongs to N . Therefore, it is orthogonal to every element in N⊥, and in particular
to (f1, f2). Consequently, < f,Kx >H=< (f1, f2), (αK1(x, .), βK2(x, .)) >E= f1(x) + f2(x) = f(x)

and the reproducing property is true.

H = H1 +H2 is therefore the RKHS of αK1 + βK2.

2. We consider ψ : X → F where F is a Hilbert space. The kernel

K : X × X → R

(x, x′) 7→< ψ(x), ψ(x′) >F

is positive definite as a direct consequence of the Aronzsajn’s theorem.

We are now going to show that the RKHS associated to positive definite kernel K is the image of the operator T
defined by :

∀f ∈ F , T f : X → R

x 7→ (Tf)(x) :=< f,ψ(x) >F

First, we recall a result seen during the class which will be the cornerstone of the proof :
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Theorem 4. Any kernel K : X × X → R positive definite is a reproducing kernel.

Useful elements of the proof for what follows :

We define H0 the vector space spanned by the functions Kx for x ∈ X . The scalar product on H0 is given by :

< f, g >H0
=
∑
i,j

aibjK(xi, xj)

where we have decomposed f and g as f =
∑
i aiKxi and g =

∑
j bjKxj (we proved in class that the definition is

independent of the decomposition). Then, the RKHS HK related to the kernel K is obtained by taking the completion
of H0 to a Hilbert space.

Now, we have all the tools to prove our claim :

HK = Im(T ) = {Tf , f ∈ F}.

• H0 ⊂ Im(T).

Indeed, let x ∈ X . For all y ∈ X , Kx(y) =< ψ(x), ψ(y) >F= (Tψ(x))(y). So Im(T ) contains all the functions
Kx for x ∈ X . Since Im(T ) is a linear space, then linear span of {Kx, x ∈ X}, that is H0, will be in Im(T ).

• T : Span(ψ(x), x ∈ X )→ H0 is isometric.
Since for all x ∈ X , Tψ(x) = Kx, we have T (

∑
x αxψ(x)) =

∑
αxKx. Hence,

< T

(∑
x

αxψ(x)

)
, T

(∑
y

βyψ(y)

)
>H0

=<
∑
x

αxKx,
∑
y

βyKy >H0

=
∑
x,y

αxβyK(x, y) using the construction of < ., . >H0
recalled in theorem 4

=
∑
x,y

αxβy < ψ(x), ψ(y) >F

=<
∑
x

αxψ(x),
∑
y

βyψ(y) >F .

This proves that T : Span(ψ(x), x ∈ X )→ H0 is isometric.

Clearly, T

(
Span(ψ(x), x ∈ X )

)
= H0.

• F = ker(T)
⊕

ker(T)⊥ with ker(T )⊥ = Span(ψ(x), x ∈ X ).

– Let f ∈ ker(T ).
So, Tf = 0 ie (Tf)(x) =< f, ψ(x) >F= 0 ∀x ∈ X . Since T is linear, this means that f ⊥ Span(ψ(x), x ∈
X ), i.e.

ker(T ) ⊂ Span(ψ(x), x ∈ X )⊥.

– Let f ∈ Span(ψ(x), x ∈ X )⊥ = {ψ(x), x ∈ X}⊥.
Then, for all x, 0 =< f, ψ(x) >F= (Tf)(x) =⇒ Tf = 0 i.e. f ∈ ker(T ). Hence :

Span(ψ(x), x ∈ X )⊥ ⊂ ker(T ).

This proves that :

ker(T) = Span(ψ(x), x ∈ X )⊥.
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– By the previous item,

ker(T )⊥ =
(
Span(ψ(x), x ∈ X )⊥

)⊥
= Span(ψ(x), x ∈ X )

This shows in particular that ker(T )⊥ is closed.
We are able to write

F = ker(T )
⊕

ker(T )⊥.

• Since T : Span(ψ(x), x ∈ X )→ H0 is isometric and surjective, and since H0 is dense in HK (by construction:
see theorem (4)), it follows that T : Span(ψ(x), x ∈ X )︸ ︷︷ ︸

=ker(T )⊥

→ H0 = HK is surjective ((∗), see below for further

justification). Hence, we have :

HK = T (ker(T )⊥) = T (ker(T )
⊕

ker(T )⊥) = T (F) = Im(T ).

Comments

This result of the question 2 allows us to have another point of view on a RKHS. Indeed, we have shown that for a
kernel K defined by a feature map ψ, the RKHS related to K is :

HK = Im(T ) = {x 7→< f,ψ(x) >F such that f ∈ F}.

This representation implies that the elements of the RKHS are inner products of elements in the feature space and
can accordingly be seen as hyperplanes.

Further justification for (∗).
T : Span(ψ(x), x ∈ X ) → H0 is isometric, and linear. We can thus apply the theorem to extend linear function
uniformly continuous (here, T is uniformly continuous because isometric). So, we can extend T as a linear isometry
on Span(ψ(x), x ∈ X ). We still call this new function T . The miracle is that this function T is in fact surjective in
HK .

Indeed, let g ∈ HK . Since H0 is dense in HK , there exists a sequence (gn)n in H0 such that ||gn − g||H0
→ 0. Since

T : Span(ψ(x), x ∈ X ) → H0 is surjective, for all n ∈ N, there exists fn ∈ F such that Tfn = gn. Since (gn)n is
convergent, it is in particular a Cauchy sequence and the fact that T is isometric gives us that for all n,m ∈ N,

||gm − gn||H0
= ||Tfm − Tfn||H0

= ||T (fm − fn)||H0
= ||fm − fn||F .

Hence, (fn)n is a Cauchy sequence in the Hilbert space F . Hence, it converges to some f ∈ F . But, since
(fn)n ∈ Span(ψ(x), x ∈ X )N, we have that f ∈ Span(ψ(x), x ∈ X ). Hence, g ∈ HK admits the preimage f by T
which belongs to Span(ψ(x), x ∈ X ).
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Exercise 3
1. We recall a theorem studied in class :

Theorem 5. The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the mapping

Fx : H → R

f 7→ f(x)

is continuous.

In our case, H = {f : [0, 1]→ R absolutely continuous , f ′ ∈ L2([0, 1]), f(0) = 0} endowed with the bilinear form :
∀f, g ∈ H, < f, g >H=

∫ 1

0
f ′(u)g′(u)du.

• H is a prehilbert space of functions

– H is a vector space of functions and < ., . >H is a bilinear form that satisfies < f, f >H≥ 0.
– f absolutely continuous on [0, 1] implies differentiable almost everywhere and ∀x ∈ [0, 1], f(x) = f(0) +∫ x

0
f ′(u)du. Hence:

∀f ∈ H, ∀x ∈ [0, 1], |f(x)| = |f(x)− f(0)︸︷︷︸
=0 since f∈H

| = |
∫ x

0

f ′(u)du| ≤
∫ x

0

|f ′(u)|︸ ︷︷ ︸
≥0

du ≤
∫ 1

0

|f ′(u)|du

=

∫ 1

0

√
|f ′(u)|2du ≤

√∫ 1

0

|f ′(u)|2du =< f, f >
1/2
H (1)

where the last inequality is obtained by using the Jensen inequality with the concave function t 7→
√
t.

Therefore < f, f >H= 0 =⇒ f = 0, showing that < ., . >H is an inner product. Thus, H is a preHilbert
space.

• H is a Hilbert space
Let (fn)n∈N a Cauchy sequence of H. Then, (f ′n)n∈N is a Cauchy sequence of L2([0, 1]) (by definition of the
norm on H), and thus convergences to some g ∈ L2([0, 1]) for the norm ||.||L2 (by completeness).

Using the inequality (1), for all x ∈ [0, 1], (fn(x))n∈N is a Cauchy sequence of R which is complete and thus
converges to some f(x). Moreover,

f(x) = lim
n→+∞

fn(x) = lim
n→+∞

∫ x

0

f ′n(u)du =

∫ x

0

g(u)du

where we have used an interversion between limit and integral which is possible thanks to the L2 convergence
of (f ′n)n to g. This shows that f is absolutely continuous and f ′ = g almost everywhere, in particular,
f ′ ∈ L2([0, 1]).

Finally, f(0) = lim
n→+∞

fn(0) = 0. Therefore, f ∈ H and lim
n→+∞

||fn − f ||H = ||f ′n − g||L2 = 0.

We have proved then H is a Hilbert space.

• H is a RKHS
Let x ∈ [0, 1]. For all f ∈ H,

|Fx(f)| = |f(x)| ≤ ||f ||H using (1).

Since the mapping Fx is linear, the above inequality proves that for all x ∈ X , Fx is continuous. We deduce
that H is a RKHS with the theorem 5.
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• Reproducing kernel of H
Consider the function

K : [0, 1]× [0, 1]→ R

(x, y) 7→ min(x, y) =

{
y if y < x
x if x ≤ y

For all x ∈ [0, 1], the function Kx : t 7→ K(x, t) belongs to H because :
– it is absolutely continuous on [0, 1] since :
∗ Kx has derivative almost everywhere (except in x)
∗ K ′x is Lebsgue integrable
∗ ∀t ∈ [0, 1], Kx(t) = Kx(0) +

∫ t
0
K ′x(u)du

– K ′x = 1[0,x] which belongs to L2([0, 1])

– and we finally have Kx(0) = 0.

Moreover for all x ∈ [0, 1] and for all f ∈ H, < f,Kx >=
∫ 1

0
f ′(u)K ′x(u)du =

∫ 1

0
f ′(u)1[0,x]du =

∫ x
0
f ′(u) =

f(x)− f(0)︸︷︷︸
=0

= f(x). So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H.

2. We consider now H = {f : [0, 1] → R absolutely continuous , f ′ ∈ L2([0, 1]), f(0) = f(1) = 0} endowed with the
bilinear form : ∀f, g ∈ H, < f, g >H=

∫ 1

0
f ′(u)g′(u)du.

• H is a prehilbert space of functions
H is a vector space of functions and < ., . >H is an inner product thanks to the previous question. Thus, H is
a preHilbert space.

• H is a Hilbert space
Let (fn)n∈N a Cauchy sequence of H. Then, (f ′n)n∈N is a Cauchy sequence of L2([0, 1]) (by definition of the
norm on H), and thus convergences to some g ∈ L2([0, 1]).

Using the inequality (1), for all x ∈ [0, 1], (fn(x))n∈N is a Cauchy sequence of R which is complete and thus
converges to some f(x). Moreover,

f(x) = lim
n→+∞

fn(x) = lim
n→+∞

∫ x

0

f ′n(u)du =

∫ x

0

g(u)du

where we have used an interversion between limit and integral which is possible thanks to the L2 convergence
of (f ′n)n to g. This shows that that f is absolutely continuous and f ′ = g almost everywhere, in particular,
f ′ ∈ L2([0, 1]).

Finally, f(0) = lim
n→+∞

fn(0) = 0 and f(1) = lim
n→+∞

fn(1) = 0. Therefore, f ∈ H and lim
n→+∞

||fn − f ||H =

||f ′n − g||L2 = 0.
• H is a RKHS

The computations derived in the previous question to show that the mapping Fx is continuous for all x ∈ [0, 1]
still hold by definition of H (which is included in the Hilbert space studied in the previous question). Thus,
using the theorem 5, we have that H is a RKHS.

• Reproducing kernel of H
Consider the function

K : [0, 1]× [0, 1]→ R

(x, y) 7→
{

(1− x)y if y < x
−x(y − x) + (1− x)x if x ≤ y

For all x ∈ [0, 1], the function Kx : t 7→ K(x, t) belongs to H because :
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– it is absolutely continuous on [0, 1] since :
∗ Kx has derivative almost everywhere (except in x)
∗ K ′x is Lebsgue integrable
∗ ∀t ∈ [0, 1], Kx(t) = Kx(0) +

∫ t
0
K ′x(u)du

– K ′x = (1− x)1[0,x] − x1[x,1] which belongs to L2([0, 1])

– and we finally have Kx(0) = Kx(1) = 0.

Moreover for all x ∈ [0, 1] and for all f ∈ H, < f,Kx >H=
∫ 1

0
f ′(u)K ′x(u)du =

∫ x
0
f ′(u)(1−x)du−

∫ 1

x
f ′(u)xdu =

(1− x)(f(x)− f(0)︸︷︷︸
=0

)− x(f(1)︸︷︷︸
=0

−f(x)) = f(x). So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H.

3. We consider now H = {f : [0, 1] → R absolutely continuous , f ′ ∈ L2([0, 1]), f(0) = f(1) = 0} endowed with the
bilinear form : ∀f, g ∈ H, < f, g >H=

∫ 1

0
(f(u)g(u) + f ′(u)g′(u))du.

• H is a prehilbert space of functions

– H is a vector space of functions and < ., . >H is a bilinear form that satisfies < f, f >H≥ 0.
– f absolutely continuous on [0, 1] implies differentiable almost everywhere and ∀x ∈ [0, 1], f(x) = f(0) +∫ x

0
f ′(u)du. Hence:

∀f ∈ H, |f(x)| = |f(x)− f(0)︸︷︷︸
=0 since f∈H

| = |
∫ x

0

f ′(u)du| ≤
∫ x

0

|f ′(u)|︸ ︷︷ ︸
≥0

du ≤
∫ 1

0

|f ′(u)|du

=

∫ 1

0

√
|f ′(u)|2du ≤︸︷︷︸

since √. is an increasing function

∫ 1

0

√
|f ′(u)|2 + |f(u)|2du

≤

√∫ 1

0

|f ′(u)|2 + |f(u)|2du =< f, f >
1/2
H (2)

where the last inequality is obtained by using the Jensen inequality with the concave function t 7→
√
t.

Therefore < f, f >H= 0 =⇒ f = 0, showing that < ., . >H is an inner product. Thus, H is a preHilbert
space.

• H is a Hilbert space
Let (fn)n∈N a Cauchy sequence of H.
– (fn)n∈N and (f ′n)n∈N are Cauchy sequences in L2([0, 1])

(fn)n∈N (resp. (f ′n)n∈N) is a Cauchy sequence of L2([0, 1]) (by definition of the norm on H), and thus
convergences to some g0 ∈ L2([0, 1]) (resp. g1 ∈ L2([0, 1])) .

– Theorem : Convergence in L2([0, 1]) =⇒ Convergence in D′([0, 1])
Let φ ∈ D([0, 1]) with compact supportKφ and (hn)n∈N a sequence of L2([0, 1]) converging to h ∈ L2([0, 1]).
Since h, hn ∈ L1

loc([0, 1]), we can consider the distributions induced by these functions. Moreover, the
Cauchy Scharwz inequality gives us :

| < h, hn, φ >D′,D | =

∣∣∣∣∣
∫
[0,1]

(h− hn)φ

∣∣∣∣∣ ≤ ||h− hn|L2 ||φ||L2 .

Thus, (hn)n converges to h in the distribution sens.
– g′0 = g1 in the distribution sens and then in L2.

Using the previous item, we get that fn → g0 in D′([0, 1]) and f ′n → g1 in D′([0, 1]). From fn → g0 in
D′([0, 1]), we deduce that f ′n → g′0 in D′([0, 1]). Using the uniqueness of the limit in D′([0, 1]), we have
g′0 = g1 in the distribution sens. Since g1 ∈ L2([0, 1]), we can deduce that g′0 ∈ L2([0, 1]), and that the
equality g′0 = g1 is also true in L2([0, 1]).

We have shown that fn → g0 and f ′n → g′0 in L2. Thus, fn → g0 in H. We only need to show that g0 belongs
to H, which is true since :
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– The inequality (2) gives that convergence inH implies pointwise convergence. Thus, g0(0) = lim
n→+∞

fn(0) =

0 and g′0(1) = lim
n→+∞

fn(1) = 0.

– We have already shown that g′0 = g1 ∈ L2([0, 1]).

– Finally, g0 is absolutely continuous since g0(x) =

∫ x

0

g′0(u)du.

• H is a RKHS
Let x ∈ [0, 1]. For all f ∈ H,

|Fx(f)| = |f(x)| ≤ ||f ||H using (2).

Thus, using the theorem 5, we have that H is a RKHS.

• Reproducing kernel of H
Consider the function

K : [0, 1]× [0, 1]→ R

(x, y) 7→


(
t 7→ e−t + (1− e−x) sh(t)sh(x) − 1

)′
(y) if y < x

0 if x ≤ y

i.e.

K : [0, 1]× [0, 1]→ R

(x, y) 7→

{
−e−y + (1− e−x) ch(y)sh(x) if y < x

0 if x ≤ y

For all x ∈ [0, 1], the function Kx : t 7→ K(x, t) belongs to H because :

– it is absolutely continuous on [0, 1] since :
∗ Kx has derivative almost everywhere (except in x)
∗ K ′x is Lebsgue integrable
∗ ∀t ∈ [0, 1], Kx(t) = Kx(0) +

∫ t
0
K ′x(u)du

– ∀y ∈ [0, 1], K ′x(y) =

(
− sin(y) + 1−cos(x)

sin(x) cos(y)

)
1[0,x](y) which belongs to L2([0, 1])

– and we finally have Kx(0) = Kx(1) = 0.

Please note that the function Kx has been built such that P(Kx) : y 7→
∫ y
0
Kx(t)dt is a solution of the equation

g′′(y) − g(y) = 1 on [0, x] with the conditions g(0) = 0 and g(x) = 0 (∗). Then for all x ∈ [0, 1] and for all
f ∈ H,
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< f,Kx >H =

∫ 1

0

Kx(u)f(u) + f ′(u)K ′x(u)du

=

∫ 1

0

Kx(u)f(u)du+

∫ 1

0

f ′(u)K ′x(u)du, and using an IPP in the first integrale we get

=

[∫ u

0

Kx(t)dtf(u)

]1
0︸ ︷︷ ︸

=0 since f(0)=f(1)=0

−
∫ x

0

f ′(u)

∫ u

0

Kx(t)dtdu+

∫ x

0

f ′(u) K ′x(u)︸ ︷︷ ︸
=P(Kx)′′(u)

du

=

∫ x

0

f ′(u)

(
P(Kx)′′(u)− P(Kx)(u)

)
︸ ︷︷ ︸

=1 using (∗)

du

= f(x)− f(0)︸︷︷︸
=0 since f∈H

= f(x)

So the reproducing property holds.

Hence, K is the reproducing kernel of the RKHS H.

Exercise 4: Duality
1. We are considering the following optimization problem

min
f∈HK

1

n

n∑
i=1

lyi(f(xi)) such that ||f ||HK
≤ B.

which is equivalent to

min
f∈HK

1

n

n∑
i=1

lyi(f(xi)) such that ||f ||2HK
≤ B2. (3)

Dualizing the constraint involved in (3), we get that the problem (3) is equivalent to :

min
f∈HK

sup
λ≥0

1

n

n∑
i=1

lyi(f(xi)) + λ(||f ||2HK
−B2). (4)

Since the function ly is convex for all y ∈ {−1,+1}, we deduce that the optimization problem (4) is a convex
optimization problem and qualification holds (since there is no constraint). Thus, strong duality holds. Thus,
the problem (4) is equivalent to

sup
λ≥0

min
f∈HK

1

n

n∑
i=1

lyi(f(xi)) + λ(||f ||2HK
−B2).

The KKT conditions give us that there exists λ∗ ≥ 0 such that (4) is equivalent to

min
f∈HK

1

n

n∑
i=1

lyi(f(xi)) + λ∗(||f ||2HK
−B2) = min

f∈HK

1

n
Ψ(f(x1), . . . , f(xn), ||f ||2HK

), (5)

where Ψ : Rn+1 → R is a function of n + 1 variables, strictly increasing with respect to the last variable. Since K
is the reproducing kernel of the RKHS HK , we have thanks to the representer theorem that a solution f of the
optimization problem (5) can be written of the form :
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f(x) =

n∑
i=1

αiKxi
(x), (αi)

n
i=1 ∈ Rn.

Denoting K the matrix of size n× n : (K(xi, xj))1≤i,j≤n, we have that :

• ∀i ∈ J1, nK, f(xi) = (Kα)i where α denote the vector (αi)
n
i=1.

• ||f ||2HK
= αTKα.

The optimization problem (5) is hence equivalent to

min
α∈Rn

1

n

n∑
i=1

lyi((Kα)i) + λ∗(αTKα−B2) = min
α∈Rn

R(Kα) + λ∗(αTKα−B2), (6)

where R(z) = 1
n

∑n
i=1 lyi(zi), ∀z ∈ Rn.

2. We compute the Fenchel-Legendre transform of R. Let z ∈ Rn,

R∗(z) = sup
x∈Rn

< x, z > −R(x)

= sup
x∈Rn

< x, z > − 1

n

n∑
i=1

lyi(xi), here we remark that the problem is separable

=

n∑
i=1

(
sup
xi∈R

[
xizi −

1

n
lyi(xi)

])

=

n∑
i=1

1

n
l∗yi(nzi).

3. We add the slack variable u = Kα in the optimization problem (6). The problem (3) can thus be written as :

min
α∈Rn,u∈Rn

R(u) + λ∗(αTKα−B2) such that u = Kα. (7)

The dual of the problem (7) is :

sup
µ∈Rn

min
α∈Rn,u∈Rn

R(u) + λ∗(αTKα−B2) + µT (Kα− u)

which is equivalent to

sup
µ∈Rn

(
min
α∈Rn

[
λ∗(αTKα−B2) + µTKα

]
+ min
u∈Rn

[
R(u)− µTu

])

• Since the minimization problem in α is an unconstrained convex optimization problem, an optimal solution is
given by setting the gradient to zero which leads to 2λ∗Kα = Kµ. Thus, all the optimal solution have the form
α = µ

2λ∗ + ε with ε ∈ Ker(K), but all those solutions lead to the same function f since K( µ
2λ∗ + ε) = K µ

2λ∗ .

• min
u∈Rn

[
R(u)− µTu

]
= − sup

u∈Rn

[
µTu−R(u)

]
= −R∗(µ).

We deduce that the above optimization problem is equivalent to

sup
µ∈Rn

1

4λ∗
µTKµ+

1

2λ∗
µTKµ−R∗(µ)− λ∗B2 = sup

µ∈Rn

3

4λ∗
µTKµ−R∗(µ)− λ∗B2.
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A solution (α, u) from (7) can be easily computed from an optimal solution µ of this dual problem with : α = µ
2λ∗

and u = Kα = 1
2λ∗Kµ. We could have a large choice for α (adding any element of Ker(K)) but all of them will

lead to the same solution of the original problem defined by : f(.) =
∑n
i=1 αiK(xi, .).

4. We are now going to the use the previous work to derive the dual problem of the logistic and the squared hinge
losses.

• Logistic loss
We consider the losses ly(u) = ln(1 + e−uy) for y ∈ {−1,+1}. For a given y ∈ {−1,+1}, we compute the
Fenchel-Legendre transform of ly:

∀v ∈ R, l∗y(v) = sup
u∈R

uv − ln(1 + e−uy)

First, we remark that

l∗y(v) =

 +∞ if (v > 0 and y = 1) or (v < 0 and y = −1)
+∞ if (v < −1 and y = 1) or (v > 1 and y = −1)
0 if v = 0 or (v = −1 and y = 1) or (v = 1 and y = −1)

The justifications are given at the end of this document.
We consider now that we are in one of the two remaining cases: (−1 < v < 0 and y = 1) or (0 < v < 1 and
y = −1).
The function u 7→ uv − ln(1 + e−uy) is a concave function. We solve the supremum problem by setting the
gradient of this function to 0 :

v +
ye−uy

1 + e−uy
= 0⇔ e−uy(v + y) = −v ⇔ u =

−1

y
ln

(
−v
v + y

)
= −y ln

(
−v
v + y

)
.

Hence, in those cases, we have l∗y(v) = −yv ln
(
−v
v+y

)
− ln(1− v

v+y ) = −yv ln
(
−v
v+y

)
− ln( y

v+y ).

Thus, the dual problem takes the following form with the logistic losses :

sup
µ∈Rn

3

4λ∗
µTKµ− 1

n

n∑
i=1

l∗yi(nµi)− λ
∗B2

i.e.

sup
µ∈Rn

3

4λ∗
µTKµ− 1

n

n∑
i=1

(
− yinµi ln

(
−nµi
nµi + yi

)
− ln

(
yi

nµi + yi

))
− λ∗B2

s.t. − 1 < nyiµi < 0, ∀i ∈ J1, nK

• Squared hinge loss
We consider the losses ly(u) = max(0, 1 − yu)2 for y ∈ {−1,+1}. For a given y ∈ {−1,+1}, we compute the
Fenchel-Legendre transform of ly:

∀v ∈ R, l∗y(v) = sup
u∈R

uv −max(0, 1− yu)2

We have :

l∗y(v) =

{
+∞ if (v > 0 and y = 1) or (v < 0 and y = −1)

−1 + (2y+v)2

4 otherwise

Thus, the dual problem takes the following form with the squared hinge losses :
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sup
µ∈Rn

3

4λ∗
µTKµ− 1

n

n∑
i=1

l∗yi(nµi)− λ
∗B2

i.e.

sup
µ∈Rn

3

4λ∗
µTKµ− 1

n

n∑
i=1

(
− 1 +

(2yi + nµi)
2

4

)
− λ∗B2

s.t. yiµi ≤ 0, ∀i ∈ J1, nK

i.e.

sup
µ∈Rn

3

4λ∗
µTKµ− yTµ− n

4
µTµ− λ∗B2

s.t. yiµi ≤ 0, ∀i ∈ J1, nK

Justification of the Fenchel-Legendre transforms for the Exercise 4
Logistic Loss

l∗y(v) =

 +∞ if (v > 0 and y = 1) or (v < 0 and y = −1)
+∞ if (v < −1 and y = 1) or (v > 1 and y = −1)
0 if v = 0 or (v = −1 and y = 1) or (v = 1 and y = −1)

We justify those points :

• If v > 0 and y = 1, lim
u→+∞

uv − ln(1 + e−uy) = lim
u→+∞

uv − ln(1 + e−u) = +∞.

• If v < 0 and y = −1, lim
u→−∞

uv − ln(1 + e−uy) = lim
u→−∞

uv − ln(1 + eu) = +∞

• If v < −1 and y = 1, uv − ln(1 + e−uy) = uv − ln(1 + e−u) = uv + u − ln(eu + 1) ∼
u→−∞

u(v + 1). Since v < −1,

lim
u→−∞

uv − ln(1 + e−uy) = +∞.

• If v > 1 and y = −1, uv − ln(1 + e−uy) = uv − ln(1 + eu) = uv − u − ln(e−u + 1) ∼
u→+∞

u(v − 1). Since v > 1,

lim
u→+∞

uv − ln(1 + e−uy) = +∞.

• If v = −1 and y = 1, uv − ln(1 + e−uy) = −u− ln(1 + e−u) which is always non positive and which takes the value
0 for u = 0.

• If v = 1 and y = −1, uv − ln(1 + e−uy) = u − ln(1 + eu) = − ln(1 + e−u) which is always non positive and which
takes the value 0 for u = 0.

Squared Hinge Loss

l∗y(v) =

{
+∞ if (v > 0 and y = 1) or (v < 0 and y = −1)

−1 + (2y+v)2

4 otherwise

Indeed :

• If v > 0 and y = 1, lim
u→+∞

uv −max(0, 1− yu)2 = lim
u→+∞

uv −max(0, 1− u)2 = +∞.

• If v < 0 and y = −1, lim
u→−∞

uv −max(0, 1− yu)2 = lim
u→−∞

uv −max(0, 1 + u)2 = +∞.
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• The function u 7→ uv − (1 − yu)2 = −1 − u2 + u(v + 2y) (since y2 = 1) reaches its maximum at u∗ = 2y+v
2 . Let’s

prove that u∗ is such that 1− yu∗ ≥ 0 in the cases (v ≤ 0 and y = 1) and (v ≥ 0 and y = −1). We will then deduce
directly that l∗y(v) = u∗v − (1− yu∗)2 in those cases.

– If (v ≤ 0 and y = 1),

1− yu∗ ≥ 0⇔ 1 ≥ u∗ ⇔ 1 ≥ 2 + v

2
⇔ v ≤ 0

– If (v ≥ 0 and y = −1),

1− yu∗ ≥ 0⇔ −1 ≤ u∗ ⇔ −1 ≤ −2 + v

2
⇔ v ≥ 0

Hence, l∗y(v) = u∗v − (1− yu∗)2 = −1 + (2y+v)2

4 .
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